Towards Shorter Solutions for Problems of Path Planning for Multiple Robots in θ-like Environments *

Pavel Surynek

Charles University, Faculty of Mathematics and Physics, Department of Theoretical Computer Science and Mathematical Logic, Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic

pavel.surynek@mff.cuni.cz

Abstract

A problem of path planning for multiple robots is addressed in this paper. A specific case of the problem with so called θ-like environments is studied. This case of the problem represent structurally the simplest solvable case and an eventual solving method for this case can be used as a building block for more general solving procedures. We propose a solving method for multi-robot path planning in θ-like environments that constructs a solution by composing it of the pre-calculated shortest solutions of certain sub-problems. This approach prefers short overall solutions. Moreover, we propose a new algorithm for pre-calculating shortest solutions of sub-problems - it is in fact an improvement of the IDA* algorithm. An experimental comparison of our methods with existing techniques is presented in the paper.

Introduction and Motivation

The problem addressed in this paper is a task of finding a sequence of moves for robots to reach given positions in a certain environment. The robots must avoid obstacles and must not collide with each other. This problem ranks among the most challenging problems of artificial intelligence (Russell & Norvig, 2003). However, the major gap in today’s results is a missing connection between theoretical (Wilson, 1974; Kornhauser et al., 1984; Ratner & Warmuth, 1986) and practical results (Ryan, 2007). This paper is trying to fill in this gap (at least partially). We particularly concentrate on a special case of the problem with so called θ-like environment. It is structurally the simplest environment in that the problem can be solved (the simpler case is just a cyclic queue of robots that can rotate around; this case is not always solvable). An eventual solving procedure for this case can be used as the building block for the more general cases.

The development of solving methods for problems of path planning for multiple robots is primarily motivated by tasks of moving objects in tight space (rearranging containers in storage yards, coordination of movements of a large group of automated agents - Ryan, 2007). However, this is not the only motivation. Many tasks from virtual spaces can be also viewed as problems of path planning for multiple robots (data transfer with limited buffers).

In this paper, we present two results. First, we present a new algorithm for solving the problem in θ-like environments by composing the overall solution of the pre-calculated optimal solutions of the sub-problems. This approach guarantees high quality of the resulting solution (the solution is short). Second, we present a new algorithm for faster off-line pre-calculating optimal solutions of the sub-problems. This new algorithm is an improvement of the standard IDA* algorithm.

Path Planning for Multiple Robots

The problem of path planning for multiple robots consists in finding a sequence of moves for rearranging robots in a certain environment. The task is to move robots from a given initial to a given goal positions. The robots must avoid obstacles and must not collide with each other.

The widely accepted formalization of the multi-robot path planning problem models the environment by an undirected graph (Ryan, 2007). The vertices of this graph represent positions in the environment and edges represent unblocked way from one vertex (position) to another vertex. Robots are placed in vertices of the graph while at least one vertex remains unoccupied. A robot can move from a vertex to a neighboring target vertex if there is no robot in the target vertex and no other robot is simultaneously entering the target vertex. The formal definition of the problem is given in the following definition.

Definition 1 (path planning for multiple robots). Let us have an undirected graph \(G = (V, E) \) where \(V = \{v_1, v_2, \ldots, v_n\} \) that models the environment. Next, let us have a set of robots \(R = \{r_1, r_2, \ldots, r_\mu\} \) where \(\mu < n \). The initial positions of the robots are defined by a function \(S_i : R \rightarrow V \) where \(S_i(r_i) \neq S_j(r_j) \) for \(i, j = 1, 2, \ldots, \mu \) with \(i \neq j \). The goal positions of the robots are defined by a function \(S' : R \rightarrow V \) where \(S'(r_i) \neq S'(r_j) \) for \(i, j = 1, 2, \ldots, \mu \) with \(i \neq j \). The problem of path planning for multiple robots is a task to find a number \(m \) and a path \(P_i = [p_{i1}, p_{i2}, \ldots, p_{im}] \) for every robot \(r \in R \) where \(p_i \in V \) for \(i = 1, 2, \ldots, m \), \(p_i = S_i(r) \), \(p_m = S'(r) \), and either \(\{p_{i1}, p_{i+1}\} \in E \) or \(p_i = p_{i+1} \) for \(i = 1, 2, \ldots, m - 1 \). Furthermore, paths

Copyright © 2009, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

* This work is supported by the Czech Science Foundation (Grantová agentura České republiky) under the contract number 201/09/P318.
is, having S_0 we set $S^i(r_j) = S_s(r_j)$, $S^j(r_j) = S_s(r_j)$ for $i \neq j$ and $S^i(r_j) = S_s(r_j)$ for $k = 1, 2, \ldots, \mu \land k \neq i, j$). The second case - a 3-cycle case - of goal arrangement is obtained by rotating robots along an ordered triple of vertices (that is, $S^j(r_k) = S_s(r_k), S^j(r_k) = S_s(r_k), S^j(r_k) = S_s(r_k)$ for s, p, q pair-wise distinct and $S^j(r_k) = S_s(r_k)$ for $k = 1, 2, \ldots, \mu \land k \neq s, p, q$). The aim is to produce optimal (shortest possible) solutions for both described cases. An example of the transposition case of the problem with the 0-like graph is shown in figure 2.

Figure 1. A problem of path planning for multiple robots. The task is to move robots from their initial positions denoted as S_0 to the goal positions denoted as S^+. A solution of length 12 is shown. Notice the parallelism at steps 7 and 8.

An example of the problem of multi-robot path planning is shown in figure 1. Notice that a path for a single robot may contain loops and the robot may stay in the same vertex for more than a single step.

There is a variety of modifications of the defined problem. A natural additional requirement is to produce shortest possible solution (that is we require the number m to be smallest as possible). Unfortunately, this requirement makes the problem intractable (namely NP-complete; Ratner & Warmuth, 1986) while without the requirement on the optimality of m the problem is in the P class (Kornhauser et al., 1984). Nevertheless, we still care about the length of the solution in our approach. Although we do not try to construct optimal solutions, we are trying to produce shorter solutions than that produced by existing sub-optimal solving procedures (Kornhauser et al., 1984).

A Special Case with 0-like Graph

Let us now describe a special case of the problem of multi-robot path planning with a so called θ-like graph (a planar embedding of this graph resembles the Greek letter θ) and with only one unoccupied vertex (that is, $\mu = |V| - 1$).

Definition 2 (θ-like graph). A θ-like graph is an undirected graph $G_{\theta}(a,b,c) = (V_{\theta}, E_{\theta})$ where $a, b, c \in \mathbb{N} \land b \geq 2$ are parameters, $V_{\theta} = \{x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_k, z_1, z_2, \ldots, z_s\}$, and $E_{\theta} = \{\{x_1, x_2\}, \ldots, \{x_{a-1}, x_a\}, \{y_1, y_2\}, \ldots, \{y_{b-1}, y_b\}, \{z_1, z_2\}, \ldots, \{z_{c-1}, z_c\}, \{x_1, y_1\}, \{x_2, y_2\}, \{y_1, z_1\}, \{y_2, z_2\}\}$. □

An example of the θ-like graph is shown in figure 2. An instance of the multi-robot path planning problem we are about to examine consists of a θ-like graph $G_{\theta}(a,b,c)$ where the vertex y_i is unoccupied (that is, $R = \{x_1, x_2, \ldots, x_r\}$ where $\mu = a + b + c - 1$). Two special cases of goal arrangements of robots are of particular interest. The first case - a transposition case - of goal arrangement is made from the original one by exchanging a pair of robots (that

Figure 2: A transposition case of the problem of path planning for multiple robots with a 0-like graph. The task is to transpose robots r_1 and r_3 using the smallest possible number of moves.

Solving Algorithm for θ-like Environments

Let us now develop an algorithm for producing suboptimal solutions of the problem of multi-robot path planning in a θ-like graph. The main idea is to compose a suboptimal solution of the problem from optimal solutions of the special cases of transposition and 3-cycle. The composition is naturally made by concatenating the corresponding sequences of moves. Since the overall solution is made of the optimal sub-solutions, we expect that the overall solution will be shorter than that produced by the existing method presented in (Kornhauser et al., 1984).

Summary of Theoretical Foundations

A bijection function $\pi : \{1, 2, \ldots, k\} \rightarrow \{1, 2, \ldots, k\}$ is called a permutation over k elements. An arrangement of robots in a graph of the instance of the multi-robot path planning problem can be viewed as a permutation over μ elements (we suppose the unoccupied vertex to be still the same). A permutation is said to be even if it is expressible as a composition of the even number of permutations. Otherwise, it is said to be an odd permutation. A permutation can be composed either even or odd, but not both. Permutations can be composed naturally. The effect of the composition (a product) of two permutations is the same as if one permutation is applied as the first and the other permutation is applied on the result of the first application.

The following several propositions represent theoretical foundations for our method.

Proposition 1 (solution from transposition case). Any permutation over k elements can be obtained as a composition of at most $k - 1$ transpositions of pairs of elements. Moreover, a sequence of transpositions necessary
for producing the permutation can be effectively determined in \(O(k)\) steps in the worst case. ■

If all the (optimal) solutions for all the transposition cases in a \(0\)-like graph are known in advance, we can effectively generate sub-optimal solution of every problem on the given \(0\)-like graph. However, the presumption that there is always a solution of a transposition case does not hold. The following proposition is due to (Wilson, 1974).

Proposition 2 (solvability of transposition case). A transposition case of path planning for multiple robots in a \(0\)-like graph \(G_\theta(a,b,c) \neq G_\theta(2,3,2)\) is solvable if and only if \(G_\theta\) contains a cycle of the odd length. ■

A problem with \(G_\theta(2,3,2)\) is not always solvable. However, notice that it can be solved using a lookup table containing solutions for all the possible arrangements of robots. Hence, we do not care about this situation further.

In the case when there is no cycle of the odd length in the given \(0\)-like, only the arrangements of robots corresponding to even permutations are reachable (Wilson, 1974). Hence, we need a different approach in this situation. The following propositions (Kornhauser et al., 1984) give us the direction.

Proposition 3 (3-cycle case). Any even permutation over \(k\) elements can be obtained as a composition of at most \(k - 1\) rotations along 3-cycles. Moreover, a sequence of 3-cycle rotations necessary for the task can be effectively determined in \(O(k)\) steps in the worst case. ■

Similarly as in the transposition case, if all the (optimal) solutions for the 3-cycle rotation cases are known in advance, we can effectively generate sub-optimal solution to any problem on a \(0\)-like graph with goal arrangement of robots corresponding to an even permutation. Fortunately, it is possible to solve any 3-cycle case of the multi-robot path planning problem on a \(0\)-like graph as it is stated in the following proposition.

Proposition 4 (solvability of 3-cycle case). A 3-cycle case of path planning for multiple robots in a \(0\)-like graph \(G_\theta(a,b,c) \neq G_\theta(2,3,2)\) is always solvable. ■

Some yet stronger result is shown in (Kornhauser et al., 1984). For every solvable multi-robot path planning problem with a graph \(G = (V,E)\) there exists a solution consisting of \(O(|V|^3)\) moves. Hence, the overall sub-optimal solution of the problem can be completely generated in \(O(|V|^3)\) steps (the time corresponds to the size of the output; worst case time as well as solution length is \(O(|V|^3)\)).

Symbolic Code of the Solving Algorithm.

At this point we have foundations to present the solving algorithm. Our new algorithm for solving path planning for multiple robots in \(0\)-like graphs is shown here as an algorithm 1. The algorithm is called \(\theta\)-BOX.

The \(\theta\)-BOX algorithm exploits the database of the optimal solutions of transposition and 3-cycle cases. The databases for transposition case and 3-cycle case are represented by two arrays - table_transposition and table_3-cycle. Both arrays are indexed by a pair of vertices whose robots we need to transpose or by an ordered triple of vertices whose robots we need to rotate. The code presented as algorithm 1 assumes that the necessary records in the database are always present. If this is not true in the real implementation we should switch to an alternative solving method (Kornhauser et al., 1984).

The algorithm is represented by a single function \(\theta\)-BOX-Solve; it gets the input graph \((G_\theta(a,b,c), S_\theta, S_\theta')\), the initial \((S_\theta)\) and the goal \((S_\theta')\) arrangements of robots in the vertices of the graph as its parameters. The function returns a solution of the problem as an ordered pair; the first element is the length of the solution (the number \(m\)) and the second element is the sequence of moves.

Algorithm 1. The \(\theta\)-BOX algorithm. The symbolic code of the algorithm for solving multi-robot path planning problem in a \(0\)-like graph. An empty sequence is denoted as \([]\). An operation of concatenation of sequences is denoted as \((.)\). Comments are in \{\} (braces).

```plaintext
function \(\theta\)-BOX-Solve\((G_\theta(a,b,c), S_\theta, S\_\theta')\) := pair
1: \(S \leftarrow S_\theta\)
2: if \(G_\theta(a,b,c) = G_\theta(2,3,2)\) then
3: \((m, \sigma) \leftarrow \text{table}^{32}_{\sigma}\{S_\theta, S\_\theta'\}\)
4: else
5: \((m, \sigma) \leftarrow (0, [])\)
6: if \(G_\theta\) contains an odd cycle then
7: for \(i = 1, 2, \ldots, m - 1\) do \(\mu = a + b + c - 1\)
8: if \(S(r_i) \neq S\_\theta'(r_i)\) then
9: \((m', \sigma') \leftarrow \text{table}^{3}_{\sigma}\{S(r_i), S\_\theta'(r_i)\}\)
10: \(S \leftarrow \text{Apply}(\sigma', S)\)
11: \(m \leftarrow m + m'\)
12: \(\sigma \leftarrow \sigma \sigma'\)
13: else \{\(G_\theta\) does not contain any odd cycle\}
14: \((m, \sigma) \leftarrow (\sigma, [])\) {the problem is unsolvable}
15: else \{\(S\_\theta'\) represents an even permutation w.r.t. \(S_\theta\)\}
16: for \(i = 1, 2, \ldots, m - 1\) do \(\mu = a + b + c - 1\)
17: if \(S(r_i) \neq S\_\theta'(r_i)\) then
18: let \(v \neq S(r_i), S\_\theta'(r_i), S(r_i), \ldots, S\_\theta'(r_i)\)
19: \((m', \sigma') \leftarrow \text{table}^{3}_{\sigma}\{S(r_i), S\_\theta'(r_i), v\}\)
20: \(S \leftarrow \text{Apply}(\sigma', S)\)
21: \(m \leftarrow m + m'\)
22: \(\sigma \leftarrow \sigma \sigma'\)
23: return \((m, \sigma)\)
```

The algorithm directly follows the series of propositions above. The special case of the graph \(G_\theta(2,3,2)\) is checked first (lines 2-3). If the input graph is not \(G_\theta(2,3,2)\), the algorithm checks whether it contains an odd cycle (line 6). If there is an odd cycle in the graph, the algorithm proceeds according to the proposition 1 (lines 6-13); that is, the solution is composed of the optimal solutions of transposition cases. If there is none odd cycle in the graph, the algorithm proceeds according to the proposition 3 (lines 14-25); that is, the solution is composed of the optimal solutions of the 3-cycle cases. Let us briefly summarize computational complexity of the \(\theta\)-BOX algorithm.

Proposition 5 (complexity of the \(\theta\)-BOX algorithm). Let us have an instance of the multi-robot path planning prob-
lem with a θ-like graph $G_\theta(a,b,c)=(V_\theta,E_\theta)$. If all the necessary records are present in the solution database for transposition and 3-cycle cases, then the θ-BOX algorithm produces the solution in the worst case time of $O(|V_\theta|)$. ■

Sketch of proof. The algorithm requires time proportional to the size of the output. The size of the output is at most $|V_\theta|$ times the length of the solution of the transposition case or the 3-cycle case. We use the result from (Kornhauser et al., 1984) which states that a solution to every multi-robot path planning problem consists of at most $O(|V_\theta|)$ moves. Hence the worst case time complexity of the algorithm is $O(|V_\theta|)$. In this proof, we suppose that a record can be found in the database in the constant time. ■

ID4* with Learning for Solving Cases Optimally

The solving algorithm for transposition and 3-cycle cases we have developed is based on the standard ID4* algorithm (Russell & Norvig, 2003). We improved ID4* by a special kind of learning since the standard ID4* with distance based heuristic was not efficient enough to generate necessary solution database. We call the new algorithm **learning ID4* or shortly LID4*. The main idea of the algorithm is to learn the heuristic for estimating the number of steps necessary for reaching the goal from the set of already explored states. The algorithm is shown here using the symbolic code as the algorithm 2.

The LID4* algorithm interprets arrangements of robots in the vertices of the θ-like graph as permutations. A difference between the initial arrangement and the current state can be also interpreted as a permutation (a difference between two permutations is a permutation). The same can be done with respect to the goal arrangement of robots. As the algorithm proceeds the minimum number of moves for reaching every encountered arrangement of robots (that is, every encountered permutation) is memorized. When a move is made, the algorithm proceeds in search only if the number of already consumed moves plus the estimated minimum number of moves required for reaching the goal does not exceed the maximum number of allowed moves (lines 6-8). The estimation of the number of necessary moves is extracted from memorized records.

The LID4* algorithm is represented by two functions. The **LearnID4*-Solve function represents the main loop in which the maximum number of moves is iteratively increased (the variable max). The search for the bounded depth is represented by the **LearnID4*-Search function.

Special primitives **Difference** and **Hash** are used as building blocks of the algorithm. The primitive **Difference** is a function, which maps two arrangements of robots to a permutation that represents the difference between them. The primitive **Hash** is a function that maps permutations to natural numbers. In order to preserve soundness of the algorithm we require special properties of the **Hash** function. Let $\psi_1,\psi_2,\sigma_1,\sigma_2,\rho$ be permutations over μ elements such that $\psi_1 = \rho \circ \sigma_1$ and $\psi_2 = \rho \circ \sigma_2$. Then the following property must hold: $\text{Hash}(\psi_1) = \text{Hash}(\psi_2) \Rightarrow \text{Hash}(\sigma_1) = \text{Hash}(\sigma_2)$. The memorized estimations are stored in the array $\text{table}_\text{distance}$. We suppose that every cell of the array is initially set to the ∞ value (infinity).

Algorithm 2. The Learning ID4* algorithm. The symbolic code of the algorithm designed for solving transposition and 3-cycle cases.

```
function LearnID4*-Solve($G_\theta(a,b,c),S_0,S'$) : pair
1:    max ← 1
2:    loop
3:        (m,σ) ← LearnID4*-Search($S_0,S_0,S',0,max,[]$)
4:        if $m \neq \infty$ then
5:            return (m,σ)
6:        max ← max + 1
7:    function LearnID4*-Search($S,S',d,max,σ$) : pair
8:        if $S = S'$ then {a solution has been found}
9:            return (d,σ)
10:       else {no solution has been found yet}
11:          δ ← difference($S,S'$)
12:          if δ = $\infty$ then return (δ,[])
13:          d ← distance table ($d$ table ($\text{Hash}(\delta)$))
14:          if $d < max$ then
15:              for every allowed move M in $S$ do
16:                  $S ← \text{Move}(M,S)$
17:                  $\sigma' ← \sigma[M]$
18:                  (m,σ) ← LearnID4*-Search($S,S',d+1,max,σ'$)
19:                  if $m = \infty$ then
20:                      return (m,σ)
21:          return (δ,[])
```

Theorem 1 (soundness of Learning ID4*). The learning ID4* algorithm is **sound**. That is, if the given multi-robot path planning problem is solvable, then the algorithm finds a shortest solution of the problem. ■

Proof. Since the learning ID4* algorithm is based on the standard ID4*, it is sufficient to prove that the heuristic we are using is admissible (lines 4-7 of **LearnID4*-Search function). In other words, we need to prove that if the condition on the line 6 of the **LearnID4*-Search function is satisfied (execution enters the line 7), then there is no chance to reach a solution using at most max steps. If this is true, then the iterative increasing of the number of allowed steps (variable max) guarantees that a shortest possible solution is found (provided that there is some). From the properties of the hashing function Hash we are able to prove that the assignment on the line 10 of **LearnID4*-Search function assigns always the same value to the same cell of the array $\text{table}_\text{distance}$. Hence, the contents of $\text{table}_\text{distance}$ defines the lower bound estimation on the number of steps necessary for reaching the goal arrangement since the lowest depth is stored.

Let us prove this. Suppose that it not true. Then there will be a number $d_1 < \infty$ in a cell of the array $\text{table}_\text{distance}$, which is subsequently replaced, by a smaller number $d_2 < d_1$. Assume that d_1 was written through a permutation ψ_1, (that is, $\text{table}_\text{distance} (\text{Hash}(\psi_1)) \leftarrow d_1$) and d_2 was written through a permutation ψ_2 (that is,
Both permutation produces the same result of the hashing function, that is Hash(ψ₁) = Hash(ψ₂). Let π₁ and π₂ be the permutations representing the differences from the goal arrangement of robots corresponding to ψ₁ and ψ₂ respectively. The described execution of the algorithm implies that \(\text{table}_\text{distance}([\text{Hash}(\pi_1)]) > \text{table}_\text{distance}([\text{Hash}(\pi_2)]) \) (because at depths \(d > d_2 \), we have \(d_2 + \text{table}_\text{distance}([\text{Hash}(\pi_2)]) > d + \text{table}_\text{distance}([\text{Hash}(\pi_1)]) \)).

Now, observe that there exists a permutation \(\rho \) such that \(ψ_1 = \rho \circ π_1 \) and \(ψ_2 = \rho \circ π_2 \). Hence, we have that Hash(π₁) = Hash(π₂), because Hash(ψ₁) = Hash(ψ₂) (the property of Hash function we are using). But then \(\text{table}_\text{distance}([\text{Hash}(\pi_2)]) = \text{table}_\text{distance}([\text{Hash}(\pi_1)]) \) which is a contradiction.

The slight complication of the described approach is the construction of the required hashing function Hash. One way to construct such a hashing function is to avoid collisions between permutations; that is, to construct a perfect hashing function (Hash(ψ₁) = Hash(ψ₂)) never happen for any two stored permutations ψ₁ and ψ₂). This approach is actually used in our experimental implementation.

Experimental Evaluation

We considered several algorithms for solving the transposition and 3-cycle cases. The uninformed iterative deepening, the standard A* with distance based heuristic, and the standard IDA* with distance based heuristic were tested (Russel & Norvig, 2003). None of these existing algorithms was efficient enough to compete with our learning IDA*. The justification of this claim is represented by an experimental evaluation, which is presented below.

The results of this experimental comparison are shown in figure 3. The solving times of instances of transposition and 3-cycle cases of the multi-robot path planning problems are compared. Small problems with up to 20 vertices are shown. The complete results together with the source for reproducing the experiments code are available at: http://kitiml.mff.cuni.cz/~surynek/research/flairs2009/. A database of solutions for transposition and 3-cycle cases can be also found at this web.

The experimental evaluation shows that the LIDA* algorithm significantly outperforms all the other tested algorithms. The LIDA* algorithm is more than 10 times faster than IDA* with distance based heuristic.

To evaluate the quality of the proposed θ-BOX algorithm we made an experimental comparison with the existing algorithm described in (Kornauser et al., 1984) - we denote this algorithm as MIT.

We compared both algorithms on a set of problems on θ-like graphs. Results on graphs with up to 20 vertices are shown in figure 4. All the necessary solutions of the cases were present in the database. Overall solving time and the length of the solution are compared. The complete results and the source code for the experiments can be again found at our web.

We can conclude that the θ-BOX algorithm outperforms the MIT algorithm significantly. The θ-BOX algorithm is more than 10 times faster than the MIT algorithm on the tested instances. Moreover, our algorithm produces about 10 times shorter solutions.

![Figure 3: Comparison of solving times of A*, iterative deepening (ID), IDA*, and LIDA* on transposition and 3-cycle cases in a θ-like graph. The logarithmic scale is used for times in seconds; the problems over the horizontal axis are ordered according to the increasing length of the solution.](image)

![Figure 4: Comparison of solving times and solution lengths of the MIT algorithm and the θ-BOX algorithm. The logarithmic scale is used for times in seconds and for the number of moves. The problems over the horizontal axis are ordered according to the increasing solving time of the θ-BOX algorithm. The upper part of the figure shows solving time necessary for solving 1000 random problems on the fixed graph. The lower part of the figure shows average length of the solution of 1000 random problems on the fixed graph.](image)

Related Works

Our work was primarily motivated by the work of Ryan (2007). He introduces the notion of path planning for mul-
multiple robots in a similar way as it is done in our definition 1. The approach for solving the problem used in (Ryan, 2007) is based on a search with a decomposition of the graph modeling the environment to easily tractable subgraphs. However, the work (Ryan, 2007) is not put in relation with existing theoretical works of Wilson (1974), Kornhauser et al. (1984), and Ratner & Warmuth (1986), which represents seminal works of the field (the multi-robot path planning is called here graph puzzles or pebble motion in graphs). On the other hand, no experimental results are presented in these theoretical works.

In (Wilson, 1974) a solvability decision criterion for multi-robot path planning problem is described. Nevertheless, efficiency of this decision criterion is not addressed in this paper. This result was extended by Kornhauser et al. (1984); the authors described a polynomial time solving algorithm - we call it the MIT algorithm in this paper. Their algorithm solves the multi-robot path planning problem with an arbitrary graph \(G = (V, E) \) in the worst case time of \(O(|V|^4) \) and the length of the solution is \(O(|V|^4) \).

It is an interesting result that although our \(\theta \)-BOX algorithm consumes time of \(O(|V|^4) \) in the worst case and length of its solutions is \(O(|V|^4) \) it is practically faster than the MIT algorithm and its solutions are significantly shorter.

Tractability issues of the problem of path planning for multiple robots are studied in (Ratner & Warmuth, 1986). The result is quite negative: if we require the shortest possible solution, then the decision variant of this problem is \(NP \)-complete. That is why the studied problem is a challenging one.

An important related work is (Surynek, 2008). A polynomial time solving algorithm for the problem with bi-connected graphs is proposed in this paper. The quite non-standard requirement of the algorithm is that at least two unoccupied vertices are required. This requirement is imposed by \(\theta \)-like graphs. The corollary of this paper is that having the solving procedure for \(\theta \)-like graphs we can adapt the solving procedure for bi-connected graphs to require only one unoccupied vertex. Another interesting related work is (Felner et al., 2007) which deals with a so called top-spin puzzle. This problem is very similar to path planning for multiple robots in \(\theta \)-like environments.

Moreover, we proposed a new algorithm called \(LIDA^* \) for finding shortest possible solutions for problems with \(\theta \)-like environments. We use \(LIDA^* \) for pre-calculating optimal solutions of transposition and 3-cycle cases. It is a variant of \(IDA^* \) with learning heuristic. We experimentally showed that both proposed methods are order of magnitude faster than the comparable existing approaches.

The important feature of our approach is that we intrinsically treat the group of robots as a single entity. That is, we are reasoning about the group of robots globally.

However, there are still some open questions. We do not know how difficult is the problem of finding shortest solution for the problem with a \(\theta \)-like graph from the theoretical point of view. Is it \(NP \)-complete (\(PSPACE \)-complete) or not?

Regarding practical aspect of our work, there is still a room for improvements. Our experiments were performed on quite small problems. It seems to be unrealistic to pre-calculate optimal solutions for special cases of all the problems with \(\theta \)-like environments of practical size. It took more than a week to pre-calculate all the problems up to the size of 30 vertices. For larger problems, we would have to relax from the requirement of solving the cases for pre-calculating optimally. So, the resulting sub-optimal solution should be constructed of sub-optimal (but not so bad) solutions of the transposition and 3-cycle cases.

Conclusion and Future Work

We proposed a new algorithm called \(\theta \)-BOX for solving problem of path planning for multiple robots in the special environments we call \(\theta \)-like environments. This type of environments represents the most difficult case in some sense and the solving procedure for this case can be used as the building block for solving procedure for problems over graphs that are more general (a bi-connected graph can be covered with \(\theta \)-like graphs). Our algorithm constructs a sub-optimal solution of the pre-calculated optimal solutions of the sub-problems - we call them transposition and 3-cycle cases. This approach guarantees speed and the high quality of the produced solution (solution is short).

References

