Redundancy Elimination in Highly Parallel Solutions of Motion Coordination Problems

Pavel Surynek

Charles University in Prague, Czech Republic
and Kobe University, Japan
Problem of motion on a graph

- Abstraction for tasks of motion of multiple (autonomous or passive) entities in a certain environment (real or virtual).
 - Entities have given an initial and a goal arrangement in the environment.
 - We need to plan movements of entities in time, so that entities reach the goal arrangement while physical limitations are observed.

- Physical limitations are:
 - Entities must not collide with each other.
 - Entities must not collide with obstacles in the environment.

- There are two basic abstractions of the task:
 - The problem of pebble motion on a graph.
 - The problem of path-planning for multiple robots.
Problem of pebble motion on a graph (1)
Wilson, 1974; Kornhauser et al., 1984

- A popular moving puzzle, that can be abstracted as the problem of pebble motion on a graph is known as Lloyd’s fifteen.
 - Entities are represented by pebbles labeled by numbers.

- The environment is modeled as an undirected graph where vertices represent locations in the environment occupied by pebbles and edges enable pebbles to go to the neighboring location.

- Formal definition of the task of pebble motion on a graph:
 - It is a quadruple \(\Pi = (G, P, S_P^0, S_P^+) \), where:
 - \(G=(V,E) \) is an undirected graph,
 - \(P = \{p_1,p_2,...,p_\mu\} \), where \(\mu<|V| \) is a set of pebbles,
 - \(S_P^0: P \rightarrow V \) is a uniquely invertible function determining the initial arrangement of pebbles in vertices of \(G \), and
 - \(S_P^+: P \rightarrow V \) is a uniquely invertible function determining the goal arrangement of pebbles in vertices of \(G \).
Problem of pebble motion on a graph (2)

Wilson, 1974; Kornhauser et al., 1984

- Time is discrete in the model. **Time steps** and their ordering is isomorphic to the structure of natural numbers.

- The **dynamincity** of the task is as follows:
 - A pebble occupying a vertex at time step i can move into a neighboring vertex (the move is finished at time step $i+1$) if the target vertex is **unoccupied** at time step i and **no other pebble** is moving simultaneously into the same target vertex.

- For the given $\Pi = (G, P, S_P^0, S_P^+)$, we need to find:
 - A sequence of moves for every pebble such that dynamincity constraint is satisfied and every pebble reaches its goal vertex.

![Diagram of pebble motion](image)

Solution of an instance of the problem of pebble motion on a graph with $P=\{1,2,3\}$

- $M_1=[v_1, v_4, v_7, v_8, v_9, v_9, v_9]$
- $M_2=[v_2, v_2, v_1, v_4, v_7, v_8, v_8]$
- $M_3=[v_3, v_3, v_2, v_1, v_4, v_7]$

makespan = 7

Time step: 1 2 3 4 5 6 7
Is there any real-life **motivation**?

- Container rearrangement (entity = **container**)
- Heavy traffic (entity = **automobile** (in jam))
- Data transfer (entity = **data packet**)
- Generalized lifts (entity = **lift**)

ICTAI 2011
Pavel Surynek
Is the motion task easy or hard?

- **Basic** variant of the task is easy to solve:
 - There exists an algorithm with **worst case time complexity** of $O(|V|^3)$ that generates solutions of the **makespan** $O(|V|^3)$ for any instance of pebble motion on $G=(V,E)$ (Kornhauser et al., 1984).

- If we want a **solution** that is **as short as possible** the complexity increases:
 - The optimization variant of the problem of pebble motion on a graph is **NP-hard** (Ratner a Warmuth, 1986).

- We focused on generating and improving **sub-optimal** solutions:
 - Restriction on **bi-connected graphs** – the task is almost always solvable.
Instances over bi-connected graph are practically most important.

Almost all the goal arrangements of pebbles are reachable from any initial arrangement.

We allow only a single unoccupied vertex (this represents the most difficult case).

An undirected graph $G=(V,E)$ is bi-connected if $|V| \geq 3$ and $\forall v \in V$ the graph $G=(V-\{v\},E')$ where $E'=$ $\{\{x,y\} \in E \mid x,y \neq v\}$ is connected.

The important property: Every bi-connected graph can be constructed from a cycle by adding handles.

→ handle decomposition
Algorithm **BIBOX-θ** (1)

Surynek, 2009

- Algorithm **BIBOX-θ** solves tasks of pebble motion on a graph.
 - The input graph is supposed to be **bi-connected**.
 - The algorithm is exploits handle decomposition of the input graph.
 - **Just one vertex** is supposed to be **unoccupied**.
 - If this is not the case, dummy pebbles are added to the graph. They are eventually filtered out of the final solution.
 - Algorithms produces a solution of any instance over $G=(V,E)$ in the worst case time of $O(|V|^4)$, still practically better than (Kornhauser et al., 1984).
 - The basic ability it to move a pebble into a selected vertex:
 - **Relocation** of the unoccupied vertex,
 - **rotations** along handles.
Algorithm **BIBOX-θ (2)**

- Using the ability of moving a selected pebble into a selected vertex more complex movements can be done:
 - Stacking pebble into a handle:
 - The process of **stacking**
 - Consider the last handle
 - Move the pebble into the grey vertex.
 - A rotation of the handle is made using the green unoccupied vertex.

...
Algorithm BIBOX-θ (3)

- Initial cycle and the first handle (so called θ-like graph) represent a special case.
 - The process of stacking does not work here.
- The resulting (even) permutation of pebbles is composed of rotations along 3-cycles (without further details).
 - **Bottleneck** of the algorithm – known constructions of solutions to 3-cycle rotations use too many moves.
 - We exploit a **database** containing pre-computed optimal solutions to 3-cycle rotations instead (a form of pattern database)
 - The overall **sub-optimal solution** is composed of optimal solutions to 3-cycle rotations.
 - → **Sub-optimal** solution of relatively high quality.
The major drawback of the described process

- If the initial graph is not fully occupied by pebbles at the beginning.
 - Dummy pebbles are added, modified instance is solved.
 - Movements of dummy pebbles are filtered out eventually.

Several types of redundancies in generated solutions were discovered using visualization software GraphRec (Koupý, 2010):

- (i) Inverse moves
 - A move that reverts the directly preceding move.

- (ii) Redundant moves
 - A sequence of moves that relocates a pebble into the same vertex (notice possible interference).

- (iii) Long sequence of moves
 - A sequence of moves that relocates a pebble into some vertex while there exists a shorter sequence doing the same (notice possible interference).
(i) **Inverse moves**

- **Pebble 1** has performed a pair of **inverse** moves.

 - Let us have a sequence of moves Φ.
 - A simple algorithm can eliminate inverse moves from Φ in the worst case time of $O(|\Phi|^2)$.
 - Removal of a single pair of inverse moves can result into occurrence of a new pair of inverse moves.
(ii) **Redundant moves**

- **Pebble 1** has performed a sequence of redundant moves.
 - It has returned to the starting vertex without interfering with other pebbles.
 - A simple algorithm can eliminate redundant moves from Φ in the worst case time of $O(|Φ|^4)$.
 - New redundant sequences can appear as well.
(iii) Long sequence of moves

- Pebble 1 has performed long sequence of moves.
 - It is possible to go along a shorter path without interfering with other pebbles.
 - A simple algorithm can eliminate long sequences from Φ in the worst case time of $O(|\Phi|^4 + |\Phi|^3 |V|^2)$.
- Again, new long sequences of moves can appear.
Experimental evaluation (1)

- **Random bi-connected** graph:
 - Addition of handles of random lengths to the currently constructed graph.
 - Initial and goal arrangement of pebbles are **random permutations**.

```
Random bi-connected graph:
- Addition of handles of random lengths to the currently constructed graph.
- Initial and goal arrangement of pebbles are random permutations.
```
Experimental evaluation (2)

- Grid 8x8:
 - The initial and goal arrangement of pebble is a random permutation again.

![Solution size - grid 8x8](image)

- Number of moves (logarithmic scale)
- Number of unoccupied vertices

- Original BIBOX-θ
- Inverse
- Redundant
- Long
Concluding remarks

- Visualization software **GraphRec** has been used to acquire knowledge about solutions of instances of pebble motion problem.

- Acquired knowledge has been used to **identify** redundancies and to develop algorithms to eliminate them.

- The experimental evaluation showed that the proposed elimination of redundancies can improve solutions significantly.
 - Especially if there are many unoccupied vertices