ON PEBBLE MOTION ON GRAPHS AND ABSTRACT MULTI-ROBOT PATH PLANNING

Pavel Surynek
presenting: Daniel Toropila
Charles University in Prague
Faculty of Mathematics and Physics
The Czech Republic
Pebble Motion on Graphs

- **Input:** An undirected graph $G=(V,E)$ and a set of pebbles $P=\{p_1, p_2, \ldots, p_\mu\}$, where $\mu < |V|$

- **Rules:**
 - Each pebble is placed in a vertex (at most one pebble in a vertex)
 - A pebble can be moved into an unoccupied vertex through an edge (no other pebble is allowed to enter the same vertex)
 - Initial positions of pebbles... simple function $S_P^0: P \rightarrow V$
 - Goal positions of pebbles... simple function $S_P^+: P \rightarrow V$

- **Task:** Find a sequence of allowed moves for pebbles such that all the pebbles are relocated from their initial positions to the given goal positions
Input: An undirected graph $G = (V, E)$ and a set of robots $R = \{r_1, r_2, ..., r_\mu\}$, where $\mu < |V|$.

Rules:
- Each robot is placed in a vertex (at most one robot in a vertex).
- A robot can move through an edge into an unoccupied vertex or into a vertex that is being left (no other robot is allowed to enter the same vertex).
- Initial positions of robots ... simple function $S_R^0: R \rightarrow V$.
- Goal positions of robots ... simple function $S_R^+: R \rightarrow V$.

Task: Find a sequence of allowed moves for robots such that all the robots reach their goal positions starting from the given initial positions.

A solution to the problem of pebble motions on a graph is also a solution to the corresponding multi-robot path planning problem.

Pavel Surynek

ICAPS GenPlan 2009
EXAMPLE OF PEBBLE MOTION ON GRAPHS AND MULTI-ROBOT PATH PLANNING

- **Initial positions** of pebbles/robots given by S_P^0 / S_R^0
- **Goal positions** of pebbles/robots given by S_P^+ / S_R^+

M is a sequence of positions of the pebble p in all the discrete time steps

O is a sequence of positions of the robot r in all the discrete time steps

Notice the **parallelism** within the solutions (multi-robot path planning allows higher parallelism)

Short solutions are preferred (a decision problem whether there is a solution no longer than the given length is **NP-complete**)

Solution of Pebble Motion Problem with P={1,2,3}

- $M_1 = [v_1, v_4, v_7, v_8, v_9, v_9, v_9]$ (length=7)
- $M_2 = [v_2, v_2, v_1, v_4, v_7, v_8, v_8]$ (length=5)
- $M_3 = [v_3, v_3, v_2, v_1, v_4, v_7]$ (length=5)

Step: 1 2 3 4 5

Solution of Multi-robot Path Planning Problem with R={1,2,3}

- $O_1 = [v_1, v_4, v_7, v_8, v_9]$ (length=5)
- $O_2 = [v_2, v_2, v_1, v_4, v_7, v_8]$ (length=5)
- $O_3 = [v_3, v_2, v_1, v_4, v_7]$ (length=5)

Step: 1 2 3 4 5
Motivation for the Problem

- rearranging containers (robot = container)
- heavy traffic control (robot = car)
- data transfer planning (robot = data packet)
- lift transportation planning in future buildings (robot = lift)
A Case with a Bi-connected Graph

- Pebble motion problems with **bi-connected graphs** are most important for practice.
- **Single unoccupied** vertex is supposed (represents the *most difficult* case).
- Almost **all the goal arrangements** of pebbles are reachable using allowed moves in bi-connected graphs.
- An undirected graph $G=(V,E)$ is **bi-connected** if and only if $|V| \geq 3$ and $\forall v \in V$ the graph $G=(V-\{v\},E')$ where $E'={{x,y}\in E \mid x,y \neq v}$ is connected.
- **Property:** Every bi-connected graph can be constructed from a cycle by consecutive adding of loops → **loop decomposition**.
A Notion of θ-like Graph

- A θ-like graph is the simplest non-trivial bi-connected graph for which the problem is solvable.
- θ-like graph $G_\theta(a,b,c)$ is specified by three parameters a, b, c where:
 - a is the size of the left loop … vertices $\{x_1, x_2, \ldots, x_a\}$
 - b is the size of the middle bone … vertices $\{y_1, y_2, \ldots, y_b\}$
 - c is the size of the right loop … vertices $\{z_1, z_2, \ldots, z_c\}$
 - The vertex y_1 is preserved \textit{unoccupied}.

- Can be solved using \textbf{3-transitivity} of bi-connected graphs (any three pebbles can be moved to any three vertices).
- 3-transitivity induces \textbf{3-cycles}, 3-cycles induce \textbf{even} permutations.
- However, the use of 3-transitivity generates \textbf{long} solutions.

Examples of θ-like sub-graphs in a bi-connected graph.

ICTAI 2009

Pavel Surynek
Proposition: Any two distinct vertices in a bi-connected graph are connected by two vertex disjoint paths.

θ-decomposition = decomposition of the bi-connected graph into θ-like sub-graphs (sub-graphs are not disjoint)
- constructed from loop decomposition
- a θ-like sub-graph is constructed for each loop of the loop decomposition
- the θ-like sub-graph consists of the loop and two disjoint paths between vertices where the loop is connected to the bi-connected remainder

MIT Algorithm:
- move a pebble into the θ-like sub-graph
- use 3-transitivity to place pebble to its final position within θ-like sub-graph

ICTAI 2009
Pavel Surynek
A New Algorithm Based on Loop Decomposition (BIBOX Algorithm)

- Pebbles are placed in stack like manner into the loop
 - The next pebble is moved into the gray connection vertex
 - Two cases
 - the pebble is somewhere in the loop → must be rotated out of the loop first
 - the pebble is outside the loop
 - Then the pebble is rotated into the loop (using green unoccupied vertex)

- The final rotation places all the pebbles to their goal positions

- Not applicable for the original cycle and the first loop (original θ-like sub-graph – 3-transitivity is used)

ICAPS GenPlan 2009

Pavel Surynek
\textbf{θ-like Graphs and Pattern Database with Optimal Solutions}

- Interpret arrangement of pebbles in a \textbf{θ-like graph} as a permutation

- \textbf{Proposition 1:}
 - Any permutation over \(\mu \) elements can be obtained as a composition of at most \(\mu-1 \) transpositions.

- \textbf{Proposition 2:}
 - Any even permutation over \(\mu \) elements can be obtained as a composition of at most \(\mu-1 \) rotations along a triple (3-cycle).

- \textbf{Proposition 3:}
 - Rotation along a \textit{triple} is always solvable in a \textbf{θ-like graph}; transposition is solvable, if the \textbf{θ-like graph} contains an odd cycle.

- \textbf{Transposition} and \textit{3-cycle rotation} case are good candidates to be stored in a pattern database (\textit{optimal solutions} to these cases are stored)
 - polynomial number of records in the database (\(O(|V|^5) + O(|V|^6) \))
 - they completely solve every pebble motion problem on a \textbf{θ-like graph}
Application of Pattern Database within MIT and BIBOX Algorithms

- Optimal macros (solutions) from the pattern database are used to compose a sub-optimal solution of a given situation

MIT Algorithm:
- Placing pebbles within the target θ-like sub-graph based on 3-transitivity is replaced by optimal macros \rightarrow MIT-θ algorithm

BIBOX Algorithm:
- Placing pebbles within the original θ-like sub-graph (original cycle+first loop of the loop decomposition) based on 3-transitivity is replaced by optimal macros \rightarrow BIBOX-θ algorithm

- All the variants of algorithms – that is MIT, MIT-θ, BIBOX, and BIBOX-θ:
 - have worst case time complexity of $O(|V|^3)$
 - generate solutions of the length $O(|V|^3)$

- Theoretically same, however MIT and MIT-θ have higher constants in the asymptotic time and solution length estimation
All the algorithms implemented in C++
Tests made with random bi-connected graphs
 - up-to 48 vertices
 - one unoccupied vertex
 - random arrangement of pebbles
All the variants of the BIBOX algorithm generate order of magnitude shorter solution than the variants of MIT algorithm
The application of macros improves all the algorithms significantly
Preference of transpositions and 3-cycle rotations were tested

ICAPS GenPlan 2009
- The same collection of problems
- Each problem solved 1000 times to accumulate measurable time
- Runtime correlates with length of generated solutions
- All the variants of the BIBOX algorithm are faster than the variants of MIT algorithm
- The use of macros brings significant speedup
- There is almost no difference in runtime between the preference of transpositions and 3-cycle rotations
CONCLUSIONS AND REMARKS

- An application of **optimal macros** for composing a solution to a certain situations in the problem of **pebble motion on graphs** has been proposed.

- Optimal macros were integrated into two existing algorithms (MIT, BIBOX) for pebble motion on graphs.

- The resulting algorithms (MIT-θ, BIBOX-θ) proved to be better in terms of **length** of generated solutions and **runtime**
 - BIBOX-θ algorithm is **the best** of all the tested algorithms.

- All the algorithms can be used for **multi-robot path planning**, however parallelism may be wasted.

- Increasing parallelism:
 - define **dependence** between moves within generated sequential solutions.
 - dependent move must be performed sequentially.
 - for each move an **earliest execution time** is calculated using the **method of critical path**.

- Future work: **optimize solutions** in a post-processing step.