Optimal Cooperative Path-Finding with Generalized Goals in Difficult Cases

Pavel Surynek
Faculty of Mathematics and Physics
Charles University in Prague
Czech Republic

SARA 2013, Leavenworth, WA, USA
Cooperative Path-Finding (CPF)

- Robots can **move only**
 - each robot needs to relocate itself
 - initial and goal location

- **Physical limitations**
 - robots must **not collide** with each other
 - must avoid **obstacles**

- **Abstraction**
 - environment – **undirected graph** $G = (V, E)$
 - vertices V – locations in the environment
 - edges E – **passable** region between neighboring locations
 - robots – entities placed in vertices
 - **at most one** robots per vertex
 - **at least one** vertex empty to allow movements
CPF Formally

- **A quadruple** \((G, R, \alpha^0, \alpha^+)\), where
 - \(G=(V,E)\) is an **undirected graph**
 - \(R = \{r_1, r_2, \ldots, r_\mu\}\), where \(\mu < |V|\) is a **set of robots**
 - \(\alpha^0: R \to V\) is an **initial arrangement of robots**
 - uniquely invertible function
 - \(\alpha^+: R \to V\) is a **goal arrangement of robots**
 - uniquely invertible function
- **Time** is discrete – time steps
- **Moves/dynamicity**
 - depends on the model
 - **Robot moves** into unoccupied neighbor
 - no other robot is entering the same target
 - sometimes **train-like** movement is allowed
 - only the leader needs to enter unoccupied vertex
Solution to CPF

- **Solution** of \((G, R, \alpha^0, \alpha^+)\)
 - sequence of arrangements of robots
 - \((i+1)\)-th arrangement obtained from \(i\)-th by legal moves
 - **the first arrangement** determined by \(\alpha^0\)
 - **the last arrangement** determined by \(\alpha^+\)
 - all the robots in their goal locations

- The length of solution sequence = **makespan**
 - **optimal/sub-optimal** makespan

Solution of an instance of cooperative path-finding on a graph with \(R=\{1,2,3\}\)

- makespan = 7
- Time step: 1 2 3 4 5 6 7

- \([v_1, v_4, v_7, v_8, v_9, v_9]\)
- \([v_2, v_2, v_1, v_4, v_7, v_8, v_8]\)
- \([v_3, v_3, v_2, v_1, v_4, v_7]\)
Motivation for CPF

- Container rearrangement
 (robot = container)

- Heavy traffic
 (robot = automobile (in jam))

- Data transfer
 (robot = data packet)

- Ship avoidance
 (robot = ship)
Generalization CPF

- Interchangeable robots
 - robots **indifferent** w.r.t. goals

- Motivation
 - formation maintenance

- \(A^+: \mathbb{R} \rightarrow \mathcal{P}(V) - \{\emptyset\} \) instead of \(\alpha^+: \mathbb{R} \rightarrow V \)
 - each robot can have multiple vertices as its goal

- **relaxed** goal
 - problem expected to get easier
CPF as SAT

- **SAT = propositional satisfiability**
 - a formula ϕ over 0/1 (false/true) variables
 - Is there a valuation under which ϕ evaluates to 1/true?
 - NP-complete problem

- **SAT solving and CPF**
 - powerful SAT solvers
 - MiniSAT, clasp, glucose, glue-MiniSAT, crypto-MiniSAT, ...
 - intelligent search, learning, restarts, heuristics, ...

- **CPF \Rightarrow SAT**
 - all the advanced techniques employed for free

- **Translation**
 - given a CPF $\Sigma=(G, R, \alpha^0, A^+)$ and a makespan k
 - construct a formula ϕ
 - satisfiable iff Σ has a solution of makespan k
How to encode a question if there is a solution of makespan \(k \)
- Encode arrangements of robots at steps 1,2,...,\(k \)
- **Step 1** ... \(\alpha^0 \)
- **Step \(k \)** ... \(\alpha^+ / A^+ \)

Integer variables modeling step \(i \)
- \(A_v^i \in \{0,1,2,..., \mu\} \)
 - \(A_v^i = j \) if robot \(r_j \) is located in vertex \(v \) at time step \(i \) or
 - \(A_v^i = 0 \) if \(v \) is empty at time step \(i \)
- \(T_v^i \in \{0,1,2,..., 2\deg(v)\} \)
 - \(0 < T_v^i \leq \deg(v) \) if an robot leaves \(v \) into the \((T_v^i)\)-th neighbor
 - \(\deg(v) \leq T_v^i \leq 2\deg(v) \) if an robots enters \(v \) from the \((T_v^i)\)-deg(v))-th neighbor
 - \(T_v^i = 0 \) if no action taken in \(v \)

Don’t forget constraints – valid transitions between time-steps
Encoding CPF as SAT

- **Integer variables**
 - replace with bit vectors
 - for example $A_v^i \in \{0,1,2,..., \mu\}$
 - replaced with $\lceil \log_2(\mu+1) \rceil$ propositional variables
 - extra states are forbidden

 - **⇒ Compact representation**
 - smaller than in SAT-based domain-independent planners
 - knowledge compilation – distance heuristic

| $|A|$ | Makespan | SATPLAN encoding | SASE encoding | INVERSE encoding |
|-----|----------|------------------|---------------|-----------------|
| 4 | 8 | 5.864 | 11.386 | 5.400 |
| 8 | 8 | 10.022 | 19.097 | 5.920 |
| 12 | 8 | 14.471 | 26.857 | 5.920 |
| 16 | 10 | 30.157 | 51.662 | 8.122 |
| 24 | 10 | 43.451 | 73.101 | 8.122 |
| 32 | 14 | 99.398 | 157.083 | 12.396 |

- SARA 2013
- Heuristics **directly built-in into the encoding**
 - **distance** heuristic
 - locations unreachable in a given time are forbidden
 - search space reduced
 - **mutex** heuristic
 - robots are treated pair-wise
 - computationally difficult

The location of robot \(r \) is allowed in steps \(< k-9 \) and \(> 2 \)

Although locations of robots \(p \) and \(q \) are allowed in steps \(< k-11 \) by distance heuristics, they cannot occur in steps \(>= k-20 \)
Experimental Evaluation

- **Experimental setup**
 - 4-connected grid of size 6×6
 - random initial and goal arrangement
 - various sizes of goal sets

![Graphs showing runtime and optimal makespan for different goal sizes and robot counts.](image-url)

N.B. The graphs illustrate the scalability of the system across varying numbers of robots and goal sizes.
Conclusion and Future Research

- CPF with generalized goals
 - set of vertices as a goal
 - makespan optimal solutions via SAT solving
- More complex actions
 - not only moving
- Adversarial version (AAAI 2013)
 - two or more teams competing
 - complexity
 - strategies to gain territory
- Formation preservation
 - motivated by computer games