Automated Classification of Bitmap Images Using Decision Trees

Pavel Surynek
Faculty of Mathematics and Physics
Charles University in Prague
Czech Republic
Graduate School of Maritime Sciences
Kobe University
Japan

Ivana Lukšová
Faculty of Mathematics and Physics
Charles University in Prague
Czech Republic

Bitmap Classification

- the task is to automatically classify bitmap images into predefined classes
- finite set of bitmap images \(J \)
- finite set of classification classes \(K \)
- for each \(t \in K \) a characterization \(d(D) \) of the class \(t \) in the natural language is given (example: „image depicting landscape“)
- the correct classification of the set of images \(J \) is defined with respect to a fixed user using a function \(c: c: J \to 2^K \) such that \(W(t) = \{d(D) | d(D) \in d(J) \land d(D) \text{ characterizes } t \} \)
- we need to learn \(c: J \to 2^K \) such that it gives the same answer as \(c \) on as many as possible images
- the condition cannot be checked for all the images
- training/testing sets are used

Selected Attributes

- attributes based on color information
 - number of colors
 - color palette
 - important for distinguishing photographs and drawings
- attributes based on edge information
 - occurrence of straight lines
 - occurrence of right angles
 - important for buildings
- three stage transformation of the image
 1. edge detection at bitmap level
 2. Hough transformation for obtaining lines expressed analytically: \(p = x \cdot \cos(\theta) + y \cdot \sin(\theta) \)
 3. segmentation of lines

Decision Trees

- the concept of decision tree is used as underlying technology
- it is crucial to propose a set of good characterizing attributes and attribute extraction techniques
- different classification classes have different important characteristics (example: straight lines are characteristic for images of buildings

Classification Classes

- drawings
- landscapes
- buildings
- photographs/not a photo
- macro objects

Experimental Evaluation

- photography
 - learning set: 115, 114, 98.15%
 - set A: 207, 243, 81.63%
 - set B: 406, 382, 74.66%
- buildings
 - color palette
 - number of local maxima in macro objects
 - histogram
- drawings
 - learning set: 104, 108, 100.00%
 - set A: 207, 251, 84.51%
 - set B: 405, 392, 83.72%

Conclusions

- modular and extensible method for image classification
- set of classification classes \(K \) can be extended
- accuracy can increased by extending the set of attributes
- software tool has been implemented
- future work
 1. run a classification system on-line
 2. allow users to give natural language descriptions

10th Mexican International Conference on Artificial Intelligence (MICAI 2011), November 2011, Puebla, Mexico