Introduction and Motivation

Adversarial Cooperative Path-Finding (ACPF)
- generalization of cooperative path-finding (CPF)
- teams of agents compete in reaching their goal
- **winner** = the first team to reach the goal

Motivation
- video games
- planning and simulations
- police interventions
- military actions
- security operations

Formal definition

The ACPF problem
Instance of ACPF problem is a 7-tuple

\[\Sigma = (G, A, T, t^*, \lambda_0, \lambda_1, \alpha) \]

Where
- \(G = (V, E) \) an undirected graph
- \(A = \{a_1, a_2, ... , a_k\} \) finite set of agents
- \(T = \{T_1, T_2, ... , T_n\} \) finite set of teams
- \(\lambda_0: A \rightarrow V \) starting position of each agent
- \(\lambda_1: A \rightarrow P(V) \) set of target positions of agents
- \(\alpha \) next placement of agents of teams of adversaries

Agent movement
- Agents move along edges or stay at a vertex.
- An agent can move to an unoccupied vertex or into vertex being left by other agent.
- Swapping along an edge is forbidden.
- Teams alternate in their moves.

Theoretical properties

Proposition. A question if there exist a solution for a selected team in ACPF is PSPACE-hard.

Reduction of QBF to ACPF
- QBF known to be PSPACE-complete
- construct an ACPF instance to simulate QBF

QBF – quantified Boolean formula
- propositional formula with quantification
- example: \(\exists x \forall y ((a \lor b) \land a \land \neg b \land \neg y) \)
- question: is the given formula valid?

Can team \(T_i \) chose moves to win whatever \(T_j \) does? (equivalently: is there a solution for \(T_i \)?)

Practical Offensive and Defensive Tactics

Agent roles
Various tactics can be used when ACPF is solved in practice. Presented suggestion is motivated by a security operation.

Agents are divided into 3 roles, which are treated differently by the planning algorithm:
- VIA – Very Important Agent
- Guards
- Attackers

Agents with fewer targets should be treated as VIAs and can be protected by guards. Attackers are supposed to harm the opponent by blocking important vertices.

Target reachability
The idea is based on effort to find a position, in which it is possible to guide an agent to its target vertex no matter how the opponents behave.

Cooperation of agents of a particular team is important. Consider situations on following figures:

Comments

Synchronizations and vertex locking
- agents are forced to follow paths leading to goal areas
- splitting between positive and negative branches need to be ensured
- vertex locking mechanism need to be employed

Conclusion and Future Work

- Presented problem is a generalization of well known cooperative path-finding problem.
- PSPACE-hardness was shown and several solving techniques were proposed.
- The ACPF problem offers new area for research:
 - Future study of the problem complexity
 - Finding a solving algorithm
 - Development of heuristics
 - Special cases (particular types of graph, bounded number of agents/teams, symmetric vs. asymmetric solutions and a lot more)

Bibliography
